Our Affiliates
If you are not able to see our affiliates then you are requested to turn off your ad blocker for our website. It will not disturb your reading flow. We are committed to provide the best user experience even with ads.Thank You!

Buy Books. Do Good. Support Local Charities iPage site builder banner Namecheap VPN - Get 100% off first month! Exam Edge Home page Join Now to earn $10 landing page builder
Home Brouwse by Subject Category Join Online Courses Find a Freelancer Our Affiliates

Important Formula for RBI Grade B DEPR Phase - 1 - Statistics and Econometrics

Karl Pearson's Correlation Coefficient

For Population:

\[{\rho _{XY}} = \frac{{cov(X,Y)}}{{{\sigma _X} \cdot {\sigma _Y}}}{\rm{ }}\]

For Sample:

\[\mathop r\nolimits_{XY} = \frac{{{s_{YX}}}}{{{s_X} \cdot {s_Y}}}\] \[\left\{ \begin{array}{l}Where,\\{s_{YX}} = \frac{{\sum {\left( {X - \overline X } \right)\left( {X - \overline X } \right)} }}{n}\\{s_X} = {\rm{ }}\sqrt {\frac{{\sum {{{\left( {X - \overline X } \right)}^2}} }}{n}} \\{s_Y} = \sqrt {\frac{{\sum {{{\left( {Y - \overline Y } \right)}^2}} }}{n}} \end{array} \right.\]

Substituting the formula of Covariance and Standard Deviation: \[\mathop r\nolimits_{XY} = \frac{{\frac{{\sum {\left( {X - \overline X } \right)\left( {X - \overline X } \right)} }}{n}}}{{\sqrt {\frac{{\sum {{{\left( {X - \overline X } \right)}^2}} }}{n}} \cdot \sqrt {\frac{{\sum {{{\left( {Y - \overline Y } \right)}^2}} }}{n}} }}\] Cancelling n: \[\mathop r\nolimits_{XY} = \frac{{\sum {\left( {{X_i} - \overline X } \right)\left( {{Y_i} - \overline Y } \right)} }}{{\sqrt {\sum {{{\left( {{X_i} - \overline X } \right)}^2} \cdot \sum {{{\left( {{Y_i} - \overline Y } \right)}^2}} } } }}\] Deviation Form: \[\mathop r\nolimits_{XY} = \frac{{\sum {\mathop x\nolimits_i \mathop y\nolimits_i } }}{{\sqrt {\sum {\mathop x\nolimits_i^2 } } \cdot \sqrt {\sum {\mathop y\nolimits_i^2 } } }}\] Formula without Mean and Deviation: Formula without Mean and Deviation: \[\mathop r\nolimits_{XY} = \frac{{n\sum {\left( {{X_i}{Y_i}} \right) - \left( {\sum {{X_i}} } \right)\left( {\sum {{Y_i}} } \right)} }}{{\sqrt {n\sum {X_i^2 - {{\left( {\sum {{X_i}} } \right)}^2}} } \cdot \sqrt {n\sum {Y_i^2 - {{\left( {\sum {{Y_i}} } \right)}^2}} } }}\]

Spearman's Rank Correlation Coefficient:

\[r' = 1 - \frac{{6\sum {{D^2}} }}{{n\left( {{n^2} - 1} \right)}}\] Where,
D = Difference between the ranks of corresponding pairs of X and Y

Simple Linear Regession Model:

For Population

\[\begin{array}{l}{Y_i} = {b_0} + {b_1}{X_i}\\{Y_i} = {b_0} + {b_1}{X_i} + u\end{array}\]

For Sample

\[{{\hat Y}_i} = {{\hat b}_0} + {{\hat b}_1}{X_i}\]

OLS Estimation

\[\begin{array}{l}{Y_i} - {{\hat Y}_i} = {e_i}\\Minimize \to {e_i} = {Y_i} - {{\hat Y}_i}\\Min\sum {\mathop e\nolimits_i^2 } = \sum {\mathop {\left( {{Y_i} - {{\hat Y}_i}} \right)}\nolimits^2 } \\Min\sum {\mathop e\nolimits_i^2 } = \sum {\mathop {\left( {{Y_i} - {{\hat b}_0} + {{\hat b}_1}{X_i}} \right)}\nolimits^2 } \\Slope:\\\mathop {\hat b}\nolimits_1 = \frac{{n\sum {\mathop X\nolimits_i \mathop Y\nolimits_i - \sum {\mathop X\nolimits_i \sum {\mathop Y\nolimits_i } } } }}{{n\sum {\mathop X\nolimits_i^2 - \mathop {\left( {\sum {\mathop X\nolimits_i } } \right)}\nolimits^2 } }}\\\mathop {\hat b}\nolimits_1 = \frac{{\sum {\mathop x\nolimits_i \mathop y\nolimits_i } }}{{\sum {\mathop x\nolimits_i^2 } }} = \frac{{{\mathop{\rm cov}} (X,Y)}}{{\mathop \sigma \nolimits_X^2 }}\\Intercept:\\\mathop {\hat b}\nolimits_0 = \overline Y - {{\hat b}_1}\overline X \end{array}\]

Hypothesis Testing of estimators:

Null Hypothesis = Estimators are not statistically more than zero.
\[\begin{array}{l}\mathop t\nolimits_0 = \frac{{{{\hat b}_0} - {b_0}}}{{{s_{{{\widehat b}_0}}}}}\\\mathop t\nolimits_1 = \frac{{{{\hat b}_1} - {b_1}}}{{{s_{{{\widehat b}_1}}}}}\end{array}\]

Variance of estimators when population variance is given:

\[\begin{array}{l}Var{\rm{ }}{\widehat b_0} = \sigma _u^2\frac{{\sum {X_i^2} }}{{n\sum {x_i^2} }}\\Var{\rm{ }}{\widehat b_1} = \sigma _u^2\frac{1}{{\sum {x_i^2} }}\end{array}\]

Estimator of Population Variance (\(\sigma _u^2\)):

\[{s^2} = \hat \sigma _u^2 = \frac{{\sum {e_i^2} }}{{n - k}}\]

Variance of estimators when population variance is not given:

\[\begin{array}{l}s_{{{\widehat b}_0}}^2 = \frac{{\sum {e_i^2} }}{{n - k}} \cdot \frac{{\sum {X_i^2} }}{{n\sum {x_i^2} }}\\s_{{{\widehat b}_1}}^2 = \frac{{\sum {e_i^2} }}{{n - k}} \cdot \frac{1}{{\sum {x_i^2} }}\end{array}\]

Coefficient of Determination:

\[\mathop R\nolimits^2 = \frac{{\sum {\hat y_i^2} }}{{\sum {y_i^2} }} = 1 - \frac{{\sum {e_i^2} }}{{\sum {y_i^2} }} = \mathop {\hat b}\nolimits_1 \frac{{\sum {{x_i}{y_i}} }}{{\sum {y_i^2} }}\]

Relationship between Correlation Coefficient & Coefficient of Determination:

\[r = \sqrt {{R^2}} \]

Enrol to RBI Grade B DEPR Google Classroom for video explanation and practice question from these formula

Ignore it if you are already a member of our Google Classroom.

No comments:



Our Affiliates
If you are not able to see our affiliates then you are requested to turn off your ad blocker for our website. It will not disturb your reading flow. We are committed to provide the best user experience even with ads. Thank You!

New Year Western Wear Up To 50% OFF!